Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae.

نویسندگان

  • G G Hardy
  • A D Magee
  • C L Ventura
  • M J Caimano
  • J Yother
چکیده

Synthesis of the Streptococcus pneumoniae type 3 capsule requires the pathway glucose-6-phosphate (Glc-6-P) --> Glc-1-P --> UDP-Glc --> UDP-glucuronic acid (UDP-GlcUA) --> (GlcUA-Glc)(n). The UDP-Glc dehydrogenase and synthase necessary for the latter two steps, and essential for capsule production, are encoded by genes (cps3D and cps3S, respectively) located in the type 3 capsule locus. The phosphoglucomutase (PGM) and Glc-1-P uridylyltransferase activities necessary for the first two steps are derived largely through the actions of cellular enzymes. Homologues of these enzymes, encoded by cps3M and cps3U in the type 3 locus, are not required for capsule production. Here, we show that cps3M and cps3U also are not required for mouse virulence. In contrast, nonencapsulated isolates containing defined mutations in cps3D and cps3S were avirulent, as were reduced-capsule isolates containing mutations in pgm. Insertion mutants that lacked PGM activity were avirulent in both immunologically normal (BALB/cByJ) and immunodeficient (CBA/N) mice. In contrast, a mutant (JY1060) with reduced PGM activity was avirulent in the former but had only modestly reduced virulence in the latter. The high virulence in CBA/N mice was not due to the lack of antibodies to phosphocholine but reflected a growth environment distinct from that found in BALB/cByJ mice. The reduced PGM activity of JY1060 resulted in enhanced binding of complement and antibodies to surface antigens. However, decomplementation of BALB/cByJ mice did not enhance the virulence of this mutant. Suppressor mutations, only some of which resulted in increased capsule production, increased the virulence of JY1060 in BALB/cByJ mice. The results suggest that PGM plays a critical role in pneumococcal virulence by affecting multiple cellular pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase.

Synthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae requires UDP-glucose (UDP-Glc) and UDP-glucuronic acid (UDP-GlcUA) for production of the [3)-beta-D-GlcUA-(1-->4)-beta-D-Glc-(1-->](n) polymer. The generation of UDP-Glc proceeds by conversion of Glc-6-P to Glc-1-P to UDP-Glc and is mediated by a phosphoglucomutase (PGM) and a Glc-1-P uridylyltransferase, respectively. ...

متن کامل

Requirement for capsule in colonization by Streptococcus pneumoniae.

Nasopharyngeal colonization is a necessary first step in the pathogenesis of Streptococcus pneumoniae. Using isolates containing defined mutations in the S. pneumoniae capsule locus, we found that expression of the capsular polysaccharide is essential for colonization by the type 2 strain D39 and the type 3 strains A66 and WU2. Nonencapsulated derivatives of each of these strains were unable to...

متن کامل

Role of HtrA in the virulence and competence of Streptococcus pneumoniae.

HtrA is a major virulence factor of Streptococcus pneumoniae (the pneumococcus). Deletion of the gene for HtrA from strain D39 of the pneumococcus completely abolished its virulence in mouse models of pneumonia and bacteremia, while the virulence of a second strain (TIGR4) was dramatically reduced. HtrA-negative mutants induced much less inflammation in the lungs during pneumonia than the wild ...

متن کامل

A new structural paradigm in copper resistance in Streptococcus pneumoniae

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized Cu...

متن کامل

The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence

Chromosomally encoded Type II Toxin-Antitoxin operons are ubiquitous in bacteria and archaea. Antitoxins neutralize the toxic effect of cognate Toxins by protein-protein interactions and sequestering the active residues of the Toxin. Toxins target essential bacterial processes, mostly translation and replication. However, one class apart is constituted by the PezAT pair because the PezT toxin t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 2001